K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space, BMC Bioinformatics 9:106 doi:10.1186/1471-2105-9-106 URL
Brown M. et al. (2005).
A metabolome pipeline: from concept to data to knowledge. Metabolomics, 1:39-51 URL
Harrington P.B. et al. (2005).
Analysis of Variance-Principal Component Analysis: A Soft Tool for Proteomic Discovery. Analytica Chimica Acta, 544:118-127. URL
Krumsiek J. et al. (2011).
Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Systems Biology, 5:21 URL
Pedreschi R. et al. (2008).
Treatment of missing values for multivariate statistical analysis of gel-based proteomics data. Proteomics, 8:1371-1383 PubMed
Rutledge D.N. et al. (2013).
Independent Components Analysis with the JADE algorithm. TrAC Trends in Analytical Chemistry, 50:22-32 URL
Saccenti E. et al. (2014).
Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10:361-374 (Review) URL
Schäfer J. and Strimmer K. (2005).
A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32 PubMed
Scholz M. et al. (2004)
Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics, 20:2447-2454 URL
Smilde K. et al. (2005).
ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics, 21(13):3043-3048, URL
Stacklies W. et al. (2007).
pcaMethods - a bioconductor package providing PCA methods for incomplete data. Bioinformatics, Applications Note, 23:1164-1167 URL
Steinfath M. et al. (2008).
Metabolite profile analysis: from raw data to regression and classification. Plysiologia Plantarum, 132:150-161 (Review) PubMed
Svensson O. et al (2002)
An investigation of OSC algorithms and their characteristics, Journal of Chemometrics Volume 16, Issue 4 PDF
Tai Y. and Speed P. (2006).
A multivariate empirical Bayes statistic for replicated microarray time course data. Ann. Statist. 34(5):2387-2412 URL
Trygg J. et al. (2006).
Chemometrics in Metabolomics. Journal of Proteome Reseach, 6, 469-479 (Review) URL
Van den Berg R. et al. (2006).
Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7:142 URL
Wehrens R. (2011).
Chemometrics with R: Multivariate Data Analysis in the Natural Sciences and Life Sciences, Ed Springer-Verlag Berlin Heidelberg, URL